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Abstract

We performed direct numerical simulations of homogeneous shear flow under stable-density stratification to study the buoyancy
effects on the heat and momentum transfer. These numerical data were compared with those of a turbulent channel flow to investigate
the similarity between the near-wall turbulence and the homogeneous shear flow. We also investigated the generation mechanism of the
persistent CGFs (counter gradient fluxes) appearing at the higher wavenumbers of the cospectrum, and lasting over a long time without
oscillation. Spatially, the persistent CGFs are associated with the longitudinal vortical structure, which is elongated in the streamwise
direction and typically observed in both homogeneous shear flow and near-wall turbulence. The CGFs appear at both the top and bot-
tom of this longitudinal vortical structure, and expand horizontally with an increase in the Richardson number. It was found that the
production and turbulent-diffusion terms are responsible for the distribution of the Reynolds shear stress including the persistent CGFs.
The buoyancy term, combined with the swirling motion of the vortex, contributes to expand the persistent CGF regions and decrease the
down gradient fluxes.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The stratified flow is defined as a flow primarily in the
horizontal direction that is affected by a vertical variation
of the density [1]. Such flows are very important in geophys-
ics as well as engineering. Not only in many important engi-
neering flows, but also in geophysical flows, turbulent
momentum and heat transports occur in the near-wall
region under the presence of stable-density stratification.
That region’s longitudinal streamwise vortical structure
makes a significant contribution to the momentum and heat
transfer [2,3]. This longitudinal vortical structure is elon-
gated in the streamwise direction and characterized by the
streamwise vortical motion and intense streamwise vorticity.

Recently, that same vortical structure was observed in
the homogeneous shear flow as well in the wall turbulence
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[4]; similar strain rates, which affect the redistribution and
energy transfer of the Reynolds stresses as well as their pro-
duction, were found to be imposed on the vortical structure
of both the homogeneous shear flow and wall turbulence.
Hence, similar buoyancy effects may be observed on the
heat and momentum transfer associated with the vortical
structure, although no quantitative comparison has been
made between the homogeneous shear flow and near-wall
turbulence under stable-density stratification.

As far as stable-density stratification is concerned, many
numerical and experimental studies have been performed
on homogeneous shear flow, and counter-gradient fluxes
(CGFs) have been investigated there in detail [4–10].

The CGFs represent the Reynolds shear stresses which
transfer the momentum to enhance the imposed mean shear
and contribute to the negative production of turbulent
kinetic energy k, and hence they are local phenomena in
time or space [12]. Under stable density stratification, how-
ever, the CGFs may become quantitatively more important
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Nomenclature

Dj spectrum of dissipation rate e
Ej energy spectrum of turbulent kinetic energy k
E12 cospectrum of velocity fluctuations u1 and u2

E�12 E12 normalized by the spatial average of the
Reynolds shear stress

g gravitational acceleration
II second invariant of deformation tensor
IIr.m.s. root-mean-square value of II

k turbulent kinetic energy, uiui=2
k0 initial turbulent kinetic energy
Li side of computational region in the ith direction
Lij,k integral scale of kth direction,

R Lk=2
0

uiðxkÞujðxk þ rkÞ=
ffiffiffiffiffi
u2

i

q ffiffiffiffiffi
u2

j

q
drk

N buoyancy frequency,
ffiffiffiffiffiffiffiffiffiffi
gbSh
p

Pr the Prandtl number
p pressure (see Eq. (10) for detail definition)
pr rapid pressure (see Eq. (11) for detail definition)
ps slow pressure (see Eq. (12) for detail definition)
q reference turbulent velocity,

ffiffiffiffiffiffiffiffi
uiui
p

Ret turbulent Reynolds number
Ri gradient Richardson number
R12 cross correlation between u1 and u2, R12 ¼

�u1u2=

ffiffiffiffiffi
u2

1

q ffiffiffiffiffi
u2

2

q
R2h cross correlation between h and u2, R2h ¼

�u2h=
ffiffiffiffiffi
u2

2

q ffiffiffiffiffi
h2

q
re radius of vortex
S mean velocity gradient

Sr reference mean velocity gradient
Sq mean density gradient
Sh mean temperature gradient
S* shear rate number
sij strain rate tensor
t timeeU i instantaneous velocity in xi-direction
Ui mean velocity in xi-direction
ui fluctuating velocity in xi-direction
x1, x2, x3 streamwise, vertical and spanwise directions
b volumetric expansion coefficient
c diffusivity of density and temperature
e dissipation rate of turbulent kinetic energy
g Kolmogorov scale
s tilting angle of longitudinal vortical structure

(see Fig. 8 for detail)
j three-dimensional wavenumber,

ffiffiffiffiffiffiffiffi
jiji
p

ji wavenumber of ith direction
jg Kolomogorov wavenumber, 2p/g
h temperature fluctuation
m kinematic viscosity
q density
~q instantaneous density
q0 reference density
xi ith component of vorticity vector
h i conditionally averaged value

ð Þ volume averaged value
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in comparison to the case without it because of a significant
decrease in the down gradient fluxes (DGFs).

Webster [5] measured the data of stationary homo-
geneous shear flow under stable stratification. His data
have subsequently often been used for a comparison to
check the validity of numerical and experimental data.
Gerz et al. [6] performed numerical simulations on strati-
fied homogeneous shear flow, and studied the generation
mechanism of the CGFs appearing in a high-Prandtl-num-
ber flow, though this is mostly explained by the linear pro-
cess. The linearly generated CGFs were confirmed in the
experimental study of a homogeneous shear flow [7].

Recently, the rapid distortion theory, RDT, was found
to predict the CGFs in a homogeneous shear flow as well
as a homogeneous decaying turbulence [8]. The RDT can
predict the oscillation motion of both the turbulent heat
flux and the Reynolds shear stress at the large Richardson
number.

There are some studies, however, indicating that the
contribution of nonlinear terms to the CGFs cannot be
negligible. Holt et al. [9], presenting the close association
between CGFs and hairpin vortices, reported that the
swirling motion of the vortex contributed to generating
the CGFs, and that the nonlinear convective process was
responsible for CGF generation. They also showed that
these nonlinear CGFs persistently appear at high wavenum-
bers even without buoyancy. They found, however, that at
the very large Richardson number, the nonlinear effects
became negligible, and that the CGFs appeared over all
the wavenumbers of the cospectrum, which is predictable
by the RDT.

In [10], the CGFs appearing at high wavenumbers were
named as the persistent CGFs, and they conjectured that
such persistent CGFs were generated because the Reynolds
shear stress produced by the vortical swirling motion rap-
idly cascaded into the higher wavenumbers; the molecular
diffusion could not dissipate the Reynolds shear stress
before emergence of the CGFs. However, their assumption
has been confirmed by neither the experimental nor the
numerical results.

Persistent CGFs are generated not only in a homoge-
neous shear flow [9–11], but also in a boundary layer [13]
and mixing layer [14], indicating that these CGFs appear
in almost all the turbulent shear flows. Hence, we should
pay closer attention to persistent CGFs, and their associa-
tion with the vortical structure.



Table 1
Flow conditions

Case C1 C2 C3 F3

Grids points 643 1283

Ret = q4/�m 66 260
S* = Sq2/� 6.9 14 27 28
S/Sr 0.025 0.5 1 1
Ri 0, 0.1, 0.16, 0.18, 0.2, 0.3, 0.4, 0.5
Pr 0.71
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The objective of this study is to clarify the effect of
stable-density stratification on the turbulent heat and mass
transfer. Not only persistent CGFs, but also DGFs are
associated with the vortical structure, which is commonly
observed in homogeneous shear flow and near-wall turbu-
lence. Hence, we discuss the similarity of the stratified
effects on turbulent heat and mass transfer between homo-
geneous shear flow and near-wall turbulence. The genera-
tion mechanism of persistent CGFs and the effects of
buoyancy on the CGFs and DGFs are then studied by
investigating the transport mechanism around the longitu-
dinal vortical structure.

2. Numerical methods and dynamical parameters

We performed both DNS and RDT analyses of a homo-
geneous shear flow at a low Reynolds number with grid
points of 64 � 64 � 64 and 128 � 128 � 128 in the stream-
wise (x1), normal (x2) and spanwise (x3) directions. Gravi-
tational acceleration g is imposed on the x2 direction.

The governing equations are the Boussinesq form of
Navier–Stokes equations and an equation for the transport
of density, which are written as

o eU i

oxi
¼ 0; ð1Þ

o eU i

ot
þ eU j

o eU i

oxj
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o
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where ~ represents the instantaneous value and eU , ~p, and ~q
represent the instantaneous velocity, pressure and density,
respectively. m and c are kinematic viscosity and diffusivity,
respectively. Instantaneous density ~q, constant reference
density q0, and fluctuating density q are associated as ~q ¼
q0 þ Sqx2 þ q, where Sq is the constant mean density gradi-
ent. A uniform shear flow is also introduced by setting the
mean velocity U i ¼ ðSx2; 0; 0Þ, where S is the imposed mean
shear rate. The instantaneous velocity can be associated
with the mean and fluctuating velocities as eU i ¼ U i þ ui.

The equations for the fluctuations are written as
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The buoyancy term gq/q0 is converted into �gbh by the
Boussinesq approximation, where b and h represent the
thermal expansion rate and temperature fluctuations,
respectively. In the following, all velocity fluctuations and
length scales in this study are non-dimensionalized byffiffiffiffiffiffiffiffiffiffiffi
Srm=2

p
and

ffiffiffiffiffiffiffiffiffiffiffi
2m=Sr

p
, where Sr represents the reference

mean velocity gradient, and S/Sr is different in the numer-
ical simulation of the different shear rate. Temperature is
non-dimensionalized, however, by Sh/4 and

ffiffiffiffiffiffiffiffiffiffiffi
2m=Sr

p
, where

Sh represents the mean temperature gradient.
Spectral accuracy in spatial discretization can be

obtained by use of the periodic boundary conditions and
the coordinate transformation developed by Rogallo [15].
The sides of the computational region L1, L2, and L3 are
4p

ffiffiffiffiffiffiffiffiffiffiffi
Sr=2m

p
ð¼380Þ, 2p

ffiffiffiffiffiffiffiffiffiffiffi
Sr=2m

p
, and 2p

ffiffiffiffiffiffiffiffiffiffiffi
Sr=2m

p
in the x1, x2

and x3 directions, respectively.
We artificially generated isotropic turbulence and

decayed it until the energy spectrum almost reached the
equilibrium state. We then used this decaying isotropic tur-
bulence as the initial condition for the homogeneous shear
flow. With this method, we can more rapidly obtain an
equilibrium state. The initial energy spectrum for decaying
isotropic turbulence is determined as

EðkÞ ¼ Aj2 exp
�j2

B2
: ð7Þ

In cases C representing the numerical simulations of coarse
grids, the constants A and B are set to be 1400 and 0.265,
respectively; in case F representing the case of finer grids,
they are set to be 30,000 and 0.265, respectively. When
the turbulent Reynolds number of this isotropic turbulence
becomes Ret(= q4/em) = 66 (260 for cases F), this decaying
turbulence is used as the initial condition for the homoge-
neous shear flow of cases C.

Details of the numerical parameters used in these studies
are listed in Table 1, where the initial values of the Rey-
nolds number and the shear rate parameters are included.
In each case, we did several numerical simulations by
systematically changing the shear rate parameters (Sq2/�)
and the Richardson numbers Ri(= N2/S2 = gbSh/S2).
However, the Prandtl number Pr = m/c is set to be 0.71 in
all cases.

Direct numerical simulation is carried out with a pseudo-
spectral code developed by Rogallo [15] for a homogeneous
shear flow. The remeshing of the grid system is used to
avoid its distortion at St = 1,3,5, . . . , 19. The resulting alias
error is removed by the combination of a phase shift and a
truncation of high wavenumbers. The RDT is also com-
puted by the same DNS code.
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In all cases, both the energy and dissipation spectra
decay sufficiently at the high wavenumbers. Moreover,
the longitudinal integral scale of the streamwise velocity
is much larger than the longitudinal length of the vortex
we will discuss in detail.

3. Results and discussion

3.1. Correlation between homogeneous flow and wall

turbulence under density stratification

The time development of the turbulent kinetic energy k

of case F3 is shown in Fig. 1. This is usually predicted by
the RDT. When the Richardson number is below 0.2, k
increases with time, while at the Richardson number larger
than 0.2, k decreases with time. As indicated by Holt et al.
[9], there is a stationary Richardson number where all the
Ri

Ri=0.0
0.2
0.4

Fig. 1. Time development of normalized turbulent kinetic energy k/k0 at
different Richardson numbers in case F3.
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Fig. 2. Time development of three-dimensional energy and dissip
terms of k budget balance, and both energy and dissipation
spectra remain mostly unchanged with time as shown in
Fig. 2. It is also noted in Fig. 2 that both the energy and
dissipation are well resolved in this simulation. This sta-
tionary Richardson number was first identified by Holt
et al. [9], and then Shih et al. [16] and Jacobitz et al. [17]
found that at the condition of a low Reynolds number,
the stationary Richardson number is affected by both the
Reynolds number and shear rate parameter.

The stationary Richardson number in each case is deter-
mined by time development of the unsteady term of the k

budget, which is shown in Fig. 3. In all cases, the unsteady
term finally converges to zero, indicating that we chose the
valid stationary Richardson number for every shear rate.

To reduce their dependence on St, we determined the ref-
erence values of both the normalized Reynolds shear stress
and turbulent heat flux (R12 and R2h) at the stationary
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ation spectra at stationary Richardson numbers in case F3.
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Richardson numbers. The time development of R12 and
R2h is shown in Fig. 4(a) and (b), where they are plotted
at the stationary Richardson numbers. In the very early
period of this calculation, both change drastically, though
they approach stationary values with time. Thus, we eval-
uated them at St = 19 as the reference values at the station-
ary Richardson numbers; the chosen time does not have
much influence as long as the flow is stationary.

Finally, R12 and R2h are compared with those of the tur-
bulent channel flow [18] and other homogeneous shear
flows to show the validity of our results (see Fig. 5(a)
and (b)). The closed symbols represent the data of the buf-
fer and the logarithmic regions of stratified channel flow;
the open symbols represent the results of homogeneous
shear flow at the stationary Richardson number.

Not only our data but also those of Gerz et al. [6] show
good agreement with the channel data in both R12 and R2h;
the data of Gerz et al. are almost at the stationary Richard-
son number. In particular, the dots of R2h are mostly plot-
ted on a single curve, including the experimental results of
Webster. Hence, the normalized turbulent heat flux is par-
ticularly dependent on the Richardson numbers.

The dependence of both the Reynolds shear stress and
turbulent heat flux on the Richardson number is also
indicated by Komori et al. [19], though their results are
on the near free-surface region where the mean shear rate
is weak, and the longitudinal vortical structure may not
be observed.

3.2. Mechanisms of persistent CGFs

Fig. 6(a) and (b) shows the time development of the
cospectra of u1 and u2 in case C2. It is noted that the CGFs
appear at the high wavenumbers after St = 6. After St = 10,
the flow almost reaches the equilibrium state, and the persis-
tent CGFs continue to appear at higher wavenumbers as
previously observed [9–11]. These fluxes were first identified
as persistent CGFs by Gerz et al. [10], and have been
reported in the various shear flow phenomena such as the
mixing and boundary layers as well as experimental and
numerical homogeneous shear flows.

They are more markedly observed in the cases of the
higher Reynolds number with finer resolution, indicating
that persistent CGFs are not numerical errors. Fig. 7 shows
the cospectra of u1 and u2 in case F3, which are non-dimen-
sionalized by the Kolmogorov scale g = (m3/�)1/4 and the
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average of the CGFs over the entire flow. With an increase
in the Richardson number, decreases in the DGFs are
marked in comparison to those in the CGFs. It is also
noted that the energy spectra at high wavenumbers con-
verge into a single curve, strongly indicating that the struc-
ture of the persistent CGFs does not change much, and
that the mechanism of generating them is similarly main-
tained over the large Richardson numbers. This is also in
good agreement with Smyth and Moum [14], who reported
that the CGFs appear over the dissipation range associated
with the Kolmogorov scale.

Although the persistent CGFs appearing in the cospec-
trum are well discussed in Smyth and Moum [14], their
association with the vortical structure and the buoyancy
effect on the CGFs remain unknown. To investigate how
persistent CGFs are associated with the vortical structure,
we conditionally averaged it from the instantaneous flow
field.

The vortical structure is identified by the second invariant
of the deformation tensor defined as II = �oui/oxjouj/oxi,
which is also represented by the strain rate and vorticity
as

II ¼ 1
2
xixi � sijsji: ð8Þ

It is well known that the cores of the vortices correspond
well to the regions II > 0 [3] in wall turbulence as well
as to those in homogeneous shear flow. This is due to
the kinematics of vortices, which dictate that a vorticity
must be larger than the strain rate in the core of the
vortex.

The details of the numerical procedure are the same as
those used in Iida et al. [4], and are summarized as follows:
(1) detection of the local maximum of the second invariant
II in cross streamwise planes (positive II is used to identify
the vortical structure, while the streamwise vorticity x1 is
used to distinguish between structures with a different sense
of rotation); (2) linking the local maximum of II as the core
of the longitudinal vortex; (3) when the local maximum
point of II in the cross-streamwise plane shifts by more
than 2 grid points from the cross-streamwise plane of the
previous step, the structure is considered to be terminated,
and detection of a new vortical structure begins; (4) each
vortex must have a streamwise length greater than
1/13L1, which is approximated as the integral scale L11,1

at St = 6 (the condition required to capture fully developed
longitudinal vortices); and (5) the educed vortical structures
are averaged with the sense of rotation by aligning the mid-
point of their streamwise extent. The number of vortical
structures educed is about two hundreds (clockwise and
anticlockwise vortices) in all cases. Almost the same num-
ber of clockwise and anticlockwise vortices is detected in
RDT as in DNS.

Fig. 8 shows a top view of the three-dimensional vorti-
cal structure. As discussed in our previous study [4], the
tilt in the spanwise direction is clearly observed; the vorti-
cal structure with a different sense of the streamwise
vorticity is tilted in the opposite direction. Such tilting
is definitely observed in the longitudinal vortical struc-
ture of near-wall turbulence [20], indicating the strong



Fig. 8. Top view of isosurface of conditionally averaged vortical structure
at different Richardson numbers, II/IIr.m.s. = 2.0, (a) Ri = 0 (x1 > 0), (b)
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motion.
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similarity of the vortical structure among turbulent shear
flows.

During the transition to turbulence in the boundary
layer, longitudinal vortices with a larger tilting angle
appear in the more downstream regions [21]. It is also well
known that oscillating the wall in a spanwise direction
changes the tilting angle of the longitudinal vortex [22],
resulting in a decrease in the skin friction coefficient. Iida
et al. [4] showed that tilting is due to the nonlinear
term, and hence cannot be observed in the RDT. Note that
in Fig. 8 no definite qualitative change at Ri = 0.4 can be
seen in the vortical structure. At Ri = 0.5, however, the
tilting markedly decreases in comparison to Ri = 0 and
0.4, indicating an attenuation of the effects of the nonlin-
ear term. The detailed tilting mechanism is discussed in
Appendix A.

Finally, we discuss the association between the longitu-
dinal vortical structure and persistent CGFs. Fig. 9 shows
the distribution of �hu1ihu2i at the different Richardson
numbers in the cross streamwise plane, including the
mid-point of a longitudinal vortical structure. huji repre-
sents the fluctuating velocity conditionally averaged in
the same procedure as averaging the longitudinal vortical
structure. Note that in Fig. 9 DGFs appear on both sides
of the vortex, while CGFs are always either on top or bot-
tom. This distribution of the Reynolds shear stress is again
clearly similar to that observed in a turbulent channel flow
[20].

CGFs appear even in the case without buoyancy, and
persist as long as the vortical structures are generated.
Moreover, the radius (re) of the educed vortex, which repre-
sents the length scale of the CGFs, is about 1/12 of the side
of the computational region ðre ¼ L2=12 ¼ 16

ffiffiffiffiffiffiffiffiffiffi
2m=S

p
Þ, and

its wavenumber ð2p=re ¼ 0:392
ffiffiffiffiffiffiffiffiffiffi
S=2m

p
Þ is located at about

the peak of the dissipation spectrum (see Fig. 2). Hence,
they must be persistent CGFs on a small scale.

With an increase in the Richardson number, DGFs on
the side of the vortex markedly decrease, while persistent
CGFs do not decrease as much; the CGFs increase spatially,
and a quarter of the area becomes CGFs at Ri = 0.5. This is
in good agreement with E12 shown in Fig. 7. There are,
however, marked differences between RDT and DNS even
at Ri = 0.5, indicating that the nonlinear term still works
in the momentum transfer. In what follows, we will compare
the case of Ri = 0 with that of Ri = 0.5 which showed signif-
icant stratified effects.

The time development of �hu1ihu2i is shown in Figs. 10
and 11. In comparison to the DGFs on the vortex sides, the
CGFs cannot be observed at the early period of the calcu-
lation. In time they appear, which is again in good agree-
ment with the time development of E12, and indicates
that the CGFs at higher wavenumbers correspond to those
at the vortex top and bottom. In the case of Ri = 0, both
DGFs and CGFs are enhanced over time. On the other
hand, at Ri = 0.5, DGFs are markedly attenuated with
time, while the CGFs are enhanced in comparison to the
DGFs, and most areas become the CGFs. To study the
generation mechanism of CGFs, the transport mechanism
of the Reynolds shear stress around the vortical structure
is investigated.

Instantaneously, the non-dimensionalized transport
equation of �u1u2 is written as follows:

� ou1u2

ot
¼ 2u2

2 þ
oðuju1u2Þ

oxj
þ u2

op
ox1

þ u1

op
ox2

� Riu1h

� u1

o2u2

ox2
j
� u2

o2u1

ox2
j
: ð9Þ

In the homogeneous shear flow, the non-dimensionalized
Poisson equation of pressure can be written as



Fig. 10. Distribution of averaged Reynolds shear stress at St = 2 and 4 in case F3 of Ri = 0; both snapshots are at same cross streamwise plane as that of
Fig. 9, and the contour interval is also same as that of Fig. 9.

Fig. 9. Distribution of �hu1ihu2i of case F3 in x3–x2 plane; all snapshots are at the same cross streamwise plane and at the same time (St = 6). Gray
represents regions of �hu1ihu2i < 0. The contour interval is also set to be the same value 0.08 in all cases. Sides of rectangular parallelepiped including an
averaged vortical structure are 62
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r2p ¼ � ouj

oxi

oui

oxj
� 4

ou2

ox1

þ Ri
oh
ox2

: ð10Þ

Moreover, the pressure can be divided into two parts, i.e.,
the slow and rapid pressure terms, which can be defined as
r2pr ¼ �4
ou2

ox1

þ Ri
oh
ox2

; ð11Þ

r2ps ¼ �
ouj

oxi

oui

oxj
: ð12Þ



Fig. 11. Distribution of averaged Reynolds shear stress at St = 2 and 4 in case F3 of Ri = 0.5; both snapshots are at same cross streamwise plane as that of
Fig. 9.
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By using pr and ps, the transport equation of �u1u2 can
be modified as follows:

� ou1u2

ot
¼ 2u2

2 þ
oðuju1u2Þ

oxj
þ o

ox1

ðpsu2Þ þ
o

ox2

ðpsu1Þ

� ps

ou2

ox1

þ ou1

ox2

� �
þ u2

opr

ox1

þ u1

opr

ox2

� Riu1h

� u1

o2u2

ox2
j
� u2

o2u1

ox2
j
; ð13Þ

where the last two terms representing the viscous term are
small in comparison to the other terms.

In the averaged vortical structure, each term in the
transport equation can be defined as follows:

Production term ¼ 2hu2i2; ð14Þ

Turbulent diffusion term ¼ oðhujihu1ihu2iÞ
oxj

; ð15Þ

Pressure diffusion term ¼ o

ox1

ðhpsihu2iÞ þ
o

ox2

ðhpsihu1iÞ;

ð16Þ

Pressure strain term ¼ �hpsi
ou2

ox1

� �
� hpsi

ou1

ox2

� �
; ð17Þ

Velocity rapid pressure gradient term

¼ hu2i
opr

ox1

� �
þ hu1i

opr

ox2

� �
; ð18Þ

Buoyancy term ¼ �Rihu1ihhi; ð19Þ

Viscous term ¼ �hu1i
o

2u2

ox2
j

* +
� hu2i

o
2u1

ox2
j

* +
: ð20Þ

Except for pressure, these definitions are the same as those
in [3], where each budget term is visualized in a turbulent
channel flow performed by DNS. In this study, however,
slow pressure is used to define both pressure–strain and
pressure–diffusion terms, while the velocity-rapid-pres-
sure-gradient term is calculated separately.

Slow pressure is associated with the vortical structure,
and is known to be dominant in comparison to the rapid
term in near-wall turbulence [23], while in a homogeneous
shear flow mostly predicted by the RDT, the rapid term
cannot be negligible. Hence, it is better to separate the pres-
sure when comparing the details of the momentum transfer
between near-wall turbulence and homogeneous shear
flow.

Fig. 12 shows the velocity vectors and each of the
budget terms at Ri = 0 in case F3. In the velocity vectors,
vortical motion is clearly observed, indicating that the iso-
surface of II represents the streamwise vortex. It should
also be noted that the production term appears on the sides
of the vortex, from where the turbulent-diffusion term
transfers the Reynolds shear stress to the top and bottom
of the vortex. The pressure–diffusion term transfers from
the outside of the vortex to the inside where the pres-
sure–strain term contributes to a drop in the Reynolds
shear stress. The above mentioned transport mechanism
is very similar to the one observed in a turbulent channel
flow (see [3]).

Fig. 13(a) and (b) shows the balances of the budget
terms at Ri = 0. Note that at Ri = 0, the sum of the turbu-
lent-diffusion and production terms assumes definite nega-
tive values at the top and bottom where persistent CGFs
appear, but positive values at the vortex sides where DGFs
assume the maximum value, indicating that both the DGFs
and the persistent CGFs are associated with the sum of the
production and turbulent-diffusion terms. The total bal-
ance of the Reynolds shear stress, i.e., the sum of all terms
in Eqs. (14)–(20), is virtually identical to the sum of the
production and turbulent-diffusion terms (see Fig. 13(b)).
Hence, both the CGFs and the DGFs must increase with
time as previously shown.

Fig. 14 shows the velocity vectors and each budget term
at Ri = 0.5 in case F3. In the velocity vectors, the vortex in
the center of the figure becomes a horizontally elongated
and vertically compressed structure. Interestingly, this vor-
tex is flanked by other streamwise vortices at both top and
bottom. The transport mechanism in the case of Ri = 0.5 is,
however, qualitatively similar to that in the case without
stratification; no definite effects of buoyancy are observed
except the buoyancy and velocity-rapid-pressure-gradient



Fig. 13. Balance of budget terms at St = 4 of case F3 at same cross streamwise plane as that of Fig. 9. (a) Balance of production and turbulent-diffusion
terms of Ri = 0 from �0.5 to 3.0 with the interval of 0.5, (b) balance of all the budget terms of Ri = 0 from �1.0 to 1.8 with the interval of 0.2.

Fig. 12. Distribution of budget terms in case F3 of Ri = 0. All snapshots are at same cross streamwise plane and same time as those of Fig. 9. (a) Contours
of production term from 0.1 to 0.7, (b) contours of turbulent-diffusion term from �0.6 to �0.1 and from 0.1 to 0.7, (c) contours of pressure–diffusion term
(slow term) from �0.5 to �0.1 and from 0.1 to 0.9, (d) contours of pressure–strain term (slow term) from �1.4 to �0.1, (e) contours of rapid-pressure–
velocity-gradient term from �0.2 to 1.0 with the interval of 0.5, (f) velocity vectors. The contour interval is set to be 0.1 in all the budget terms except
rapid-pressure–velocity-gradient term.
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terms. Interestingly, the rapid-pressure term works to
reduce the effects of the buoyancy term, which assumes a
strongly negative value at both vortex sides, and must
decrease the DGFs there. Moreover, the buoyancy term,
transported around the vortex, takes a strong negative
value in both the vortex top and bottom, which must be
due to the swirling motion and obviously nonlinear phe-
nomena. Thus, the buoyancy term must increase the CGFs,
though it attenuates the DGFs.

In short, the persistent CGFs are generated by both the
production and turbulent-diffusion terms, and enhanced by
the buoyancy term, so that they do not decrease as much



Fig. 14. Distribution of budget terms in case F3 of Ri = 0.5; all snapshots are at same cross streamwise plane and same time as those of Fig. 9. (a)
Contours of production term from 0.04 to 0.2, (b) contours of turbulent-diffusion term from �0.24 to �0.04 and from 0.04 to 0.14, (c) contours of
pressure–diffusion term (slow term) from �0.16 to �0.04 and from 0.04 to 0.32, (d) contours of pressure–strain term (slow term) from �0.4 to 0.04, (e)
contours of rapid-pressure–velocity-gradient term from �0.1 to 0.5 with the interval of 0.05, (f) contours of buoyancy term from �0.45 to 0.05 with the
interval of 0.05, (g) velocity vectors. The contour interval is set to be 0.04 in all the budget terms except rapid-pressure–velocity-gradient and buoyancy
terms.
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as the DGFs, and hence increase spatially with an increase
in the Richardson number.

4. Conclusions

Direct numerical simulations of homogeneous shear
flow under stable-density stratification are performed to
study the buoyancy effects on both the transport mecha-
nism and vortical structure. In all cases, the Prandtl num-
ber of the fluid is 0.71 by assuming the air flow, and
hence the effects of the different Prandtl number are beyond
scope of our study. The numerical data obtained are com-
pared with those of a turbulent channel flow under stable
stratification and other homogeneous shear flows, to show
the similar buoyancy effect among different flows. The
mechanism of persistent CGFs is also studied in their asso-
ciation with the vortical structure.

(1) The stationary values of both R12 and R2h are
obtained at the stationary Richardson number deter-
mined by the time development of turbulent kinetic
energy. The plots of R12 and R2h versus the Richard-
son number are quantitatively in good agreement
with those of stably stratified channel flow.

(2) The visualization of turbulent structures shows that
there is a close association between the streamwise
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vortical structure and the persistent CGFs, which
appear at the top and bottom of the vortex. With an
increase in the Richardson number, the Reynolds
shear stress at the sides of the vortex markedly
decreases, while the persistent CGFs do not decrease
as much as the Reynolds shear stress, and the area
of the CGFs increases.

(3) The transport mechanism of the Reynolds shear
stress was investigated around the vortical structure.
It was found that the production of the Reynolds
shear stress takes a large value on both sides of the
vortex, and that the turbulent diffusion transfers it
around the vortex sphere, while pressure diffusion
transfers it to the inside of the vortex where the pres-
sure–strain correlation destroys it. The above-
mentioned transport mechanism is surprisingly simi-
lar to that in the turbulent channel flow. It was also
found that the sum of the turbulent-diffusion and
production terms corresponds well to the Reynolds
shear stress. Hence, their sum is mostly responsible
for both CGFs and DGFs. With an increase in the
Richardson number, the negative regions of the
buoyancy term expand from the vortex sides to its
top and bottom by a swirling motion, and hence
the CGF regions expand.
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Appendix A

In this appendix, we discuss the relation between the tilt-
ing and strain-rates imposed on the vortex. Figs. 15 and 16
show the association between tilting angle s and strain rate
oua/oxa in the averaged longitudinal vortical structure of
x1 > 0. As shown in Fig. 8, the tilting angle is determined
as the angle between the x1 axis and the segment connect-
ing the cores of vortices at both edges of a longitudinal
vortical structure, while the strain rate at the vortex core
is averaged over the vortex axis to reduce fluctuations,
and normalized by each r.m.s. value.

In the case without buoyancy, the dots of the tilting
angle are unevenly distributed on the right-hand side, indi-
cating that most vortices with positive streamwise vorticity
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have a positive tilting angle. It is also found that in the vor-
tex core, the strain rates ou1/ox1 and ou3/ox3 are positive,
whereas the rate ou2/ox2 is negative. Moreover, an increase
in the tilting angle is almost proportionate to that of
jow/ozj and jov/oyj, though no correlation can be seen
between the tilting angle and jou/oxj.

In the case of Ri = 0.5, the dots of the strain rates are
more scattered, though ou1/ox1 and ou2/ox2 still tend to
be positive and negative, respectively. However, a marked
difference is observed on ou3/ox3 between Ri = 0 and 0.5;
the dots of ou3/ox3 are evenly distributed between the
upper (positive) and the lower (negative) regions in the case
of Ri = 0.5, indicating that the vortex stretching in the
spanwise direction becomes essentially negligible. Hence,
the spanwise stretching must be associated with the tilting
of the longitudinal vortex in a spanwise direction.
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